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SUMMARY 
A finite difference scheme is given for the numerical approximation of the real solution of the second order linear 
differential equation, lacking the first derivative, with mixed boundary conditions. The matrix associated with the 
resulting system of linear equations is tridiagonal and the overall discretization error is O (h4). The derived error bound 
is at most four times larger than the observed maximum error in absolute value for the numerical problem considered. 

I. Introduction 

It is well-known that the solution of the boundary  value problem 

y"(x) = f ( x )y (x )+g(x ) ,  a< x<_ b, (1.1) 

subject to the boundary conditions 

y ' ( a ) -  cy (a) = A ,  
y' (b)+ dy(b) = B,  (1.2) 

is unique provided 

(i) c>O,  d>O,  c + d > O ,  
(iX) f (x)  >0 for x~  [a, b ] ,  (1.3) 

see Henrici [4, p. 385]. 
The numerical approximation of the solution of the real linear boundary  value problem 

(1.1)-(1.2) by finite difference methods has been considered by many  authors. The reader is 
referred to Fox [2] for many elaborate finite difference schemes for obtaining an approximate  
solution of the preceding boundary value problem. A second order finite difference scheme for 
the numerical solution of a more general two point boundary  value problem is developed and 
analysed by Aziz and Hubbard  [1]. In defining any finite difference scheme for the numerical 
solution of Eqns. (1.1)-(1.2), we first introduce a finite set of grid points 

X m = a + ( m - 1 ) h ,  r e = l ,  2 . . . . .  N ,  (1.4) 

where xl =a, xN=b, and h = ( b - a ) / ( N - 1 ) .  We also require that the discretization error 

e, = y(xi)-- y, (1.5) 

that is the difference between the exact solution y(xi) of the problem, Eqns. (1.1)-(1.2), at the 
grid point x~ and its approximation y~ obtained by solving the finite difference equations can be 
made arbitrarily small as the step size h tends to zero. We also need a bound on the discretization 
error e~. Such error bounds are useful in proving convergence of the finite difference method, in 
the comparison of different numerical methods, for Richardson extrapolation, and in assisting 
the computer  in the selection of h. However, this choice of the step-size h based on these error 
bounds may not be very realistic. 

* This research was carried out during author's sabbatical leave at the Computer Centre Physics Department, The 
A.M.U. Aligarh, U. P., India. 
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The author [6] considered the numerical solution of Eqns. (1.1)-(1.2) satisfying the conditions 
(1.3) and proved that the resulting error is O (h 4) based on the finite difference equations 

h 2 h 3 
(i) - y ( x l ) +  y(x2 ) = hy'(xl) + ~ (5y"(xl)+ y"(x2)) + ~ y ' " (x l ) -  x-~6hSy(5)(al), 

x l < a l < x 2  ; 

h 2 h 6 
(iX) y(Xm_l)--Zy(x,,)+ y(x,,+ l) = ~ (Y"(Xm-1)+ IOy"(Xm)+ Y"(Xm+ I)) -- 240 yr 

X m - l < a , , < X , , + l ,  m = 2 , 3  . . . . .  N- -1  ; 
and 

h 2 h 3 
(iii) - y(xN- 1)+ Y(XN) = hy'(xN) -- ~ (Y"(XN-1)+ 5y"(XN)) + ~ y'"(xN)-- a-~hSy~5)(aN) , 

XN_I<aN<XN.  (1.6) 

The details of development of the formulas (1.5) are given in [6]. The bound on 11 ell derived by 
Usmani is 

( M s  ( b - a ) M 6 ~ ( 2  ) h 4 =  (1.7) Ilell = maxleill < ~ + ~ 7J\c  + b - a  E, 

where M6=max  ly(6)(x)l for a <  x <  b, 

M5 = max. (  max. ly(5)(x)l, max. ly(5)(x)]~, 
\a<x<xl  xN-l <x<b / 

and e=(em) is the N-dimensional error vector. Note  that for a vector v=(vi), Ilvll =max~lv~l, 
and for a matrix M = (mti), [IMI1 = max iZ j  Impel. The actual experiments show that the quantity 
E, in general, is 18 times larger than Eo, the observed maximum error in absolute value. We 
might remark that in deriving Eqn. (1.7) the author assumed that 

c > 0 ,  (1.8) 

and d introduced in Eqns. (1.3) may be zero. In boundary value problems where c >0,  d >0,  
the inequality (1.7) turns out to be too crude. In the sections that follow we will examine a 
technique to sharpen the inequality (1.7). 

2. Purpose 

Assume that the exact solution of the problem (1.1)-(1.2) is y(x)~ C 6. The replacement of the 
problem (1.1)-(1.2) by the difference equations (1.6) leads to the system of linear equations (2.1) 
in the unknowns y,, (m= 1, 2 . . . . .  N) where Yr, is the numerical approximation to y(Xm). 

My  = b. (2.1) 

Here m =(mii ) is an (N x N) matrix, y = (Yi). b = (bi) are N-dimensional column vectors, and 

m1,1 = l + u ,  mN.N = I + V ,  
lo 2 mij = 2 + ~ h  f~, i = j  = 2, 3, ..., N - 1 ,  

. . . .  1 + ~-~h2f~+l, j - i  = 1, 

= - l + ~ h 2 f i _ l ,  i - j  = 1, 

= 0,  otherwise ; (2.2) 

u = hc+x-~h2fl +a-~h 3 (cfl + f ; ) ,  

v = hd+i~h2fN+i~h 3 (dfN--f~,), (2.3) 

and f~ =-f(xi), f / - f '  (xi) etc. Note that the quantities u and v are positive for sufficiently small 
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values of h > 0, provided we assume that 

c > 0 ,  d > 0 .  (2.4) 

The purpose of this paper is to sharpen the inequality given by Eqn. (1.7) under the assumption 
(2.4), instead of Eqn. (1.8). 

The error equation 

Me = T (2.5) 

is obtained in the usual manner, as in [6]. The column vector T =  (ti) is given below. 

t I = l@6hSy(5)(al), tN = T~6hSy(5)(aN), 

tm = 2-~h6y(6)(am), (m = 2, 3 , . . . ,  N -  1). (2.6) 

The matrix M > P provided f ( x )  satisfies Eqns. (1.3), where P = (Pij) is an N x N matrix such 
that 

P a , l = l + u ,  P N , N = I + v ,  

Pi.j = 2 ,  i , j =  2 , 3 , . . . , N - 1 ,  

= - 1 ,  l i - j l = l ,  

= 0 ,  otherwise. (2.7) 

The matrix M is irreducible provided 

h < (12/fM) ~ , fM = max. f ( x ) ,  (2.8) 
a<_x<_b 

see [4, Corollary of Theorem 7.2]. It also follows from Theorem 7.4 [4] that M is a monotone 
matrix. Similarly P given by Eqns. (2.7) is also a monotone matrix, therefore it follows that 

O< M - I  < P -1 �9 (2.9) 

A further analysis now depends on the properties of P-a .  We now attempt to determine 
p -  a = (Pij) explicitly. The author relies entirely on the theory of linear difference equations for 
generating the elements of the matrix P -  1, see [4, 5]. 

3. Inversion of the matrix P, and error bounds 

Concerning P - a =  (Pu), we will prove the following theorem. 

Theorem 3.1' The matrix P - 1 =  (Pij) is symmetric and 

Pi j= (l + ( i - 1 ) u ) ' ( l  + ( N - j ) v ) / D  > 0 ,  i < j , 

= ( l + ( j - 1 ) u ) ' ( l + ( N - i ) v ) / D  > 0 ,  i>=j, 

where D = u + v + ( N - 1 ) u v ,  and u, v are given by Eqns. (2.3). 

Remark. It can be easily seen that D is the determinant of the matrix P. 

Proof: On multiplying the rows of P by the j t h  column of p - a ,  we obtain the following 
difference equations. 

(i) ( l + u ) P l , j - P 2 , j =  O, 

(ii) - P / _ I , j + 2 P i ,  j - P / + I , j =  O, 

(iii) -P~_ 1,j+2Pi, j . -Pj+ ~,~ = 1, 

(iv) - P i _ l , j + 2 P i , ~ - P i + l , j =  O, 

(v) -e~_~,~+(l +v)eN, j= o, 

i =  2,3, . . . , j -  1, 

i = j + l , j + 2  . . . . .  N - l ,  

(3.1) 
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The solution of Eqn. (3.1) (ii) with initial condition Eqn. (3.1) (i) is easily seen to be 

Pii = Cl (l + i u / ( 1 - u ) ) ,  i < j ,  (3.2) 

where C1 is independent of/, but may depend onj. Similarly the solution of difference Eqn. (3.1) 
(iv) with associated condition 3.1 (v) is 

Pii= C 2 ( 1 - i v / ( l + N v ) ) ,  i > j ,  (3.3) 

and the arbitrary constant C z depends only on j. The element Pjj can be obtained either from 
Eqns. (3.2) or (3.3). On equating the expressions for PJJ obtained from Eqns. (3.2) and (3.3) 
respectively, we obtain an equation in the unknowns C1 and C2 in the form 

C 1 (1 +ju/(1 - u ) )  = C2 (1 - jr~(1 +Uv) ) .  (3.4) 

Also, on substituting in Eqn. (3.1) (iii), the values of Pij ( i = j - 1 ,  j, j +  1) derived from Eqns. 
(3.2) and (3.3) respectively we obtain 

C~ (1 + ( j +  1)u/(l - u ) ) - C 2 ( 1  - (j-~- 1) v/(1 +Nv))  -- 1. (3.5) 

On solving Eqns. (3.4) and (3.5) for C1 and C 2, we obtain 

C1 = (1 -u)(1 + ( N - j ) v ) / D  ; (3.6) 

C 2 ~ - -  (1 + Nv)(1 + ( j -  1)u)/D. (3.7) 

The theorem follows on substituting the values of C~ and C2 in Eqns. (3.2) and (3.3) respectively. 
Now define 

N - 1  

Ri = (Pi, I + Pi, N) , Si = Z Pij . (3.8) 
j = 2  

Concerning R~ and Si we prove the following lemmas. 

Lemma 3.2 : 

R i = ( 2 + ( i -  1 ) u + ( N - i ) v ) / D ,  

and / f  w = max (u, v), then 

R i < ( 2+ (N - 1 ) w) /D  for all i.  

Lemma 3.3 : 

S~ = (H + iG- iE D)/2D , 

and hence 

& < (GZ+4HD)/SD 2 for all i ,  

where 
G = ( 2 N - 1 ) u + 3 v + ( N  2 - 1 ) u v ,  

H = ( 2 N - 4 ) - 2 ( N -  1 ) u + N ( N - 3 ) v - N ( N -  1)uv. 

Proof of Lemma 3.2 

Using Theorem 3.1, we get 

(1 + ( N - i ) v ) +  (1 + ( i -  1)u) 
Ri = Pi'l q-Pi'N = D , 

= ( 2 + ( i -  1 ) u + ( N - i ) v ) / D ,  

and dearly R i is independent o f / i f  u = v and equals (2 + ( N - 1 ) u ) / D .  Further, if u r  v, and 
w = max. (u, v), then 

Ri < ( 2 + ( N - 1 ) w ) / D  for all i. 
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Proof of Lemma 3.3 

Consider 
i N - I  

S,= ~ pij+ Z P,~ 
j = 2  j = i + l  

=--1 l+(N-i)v)  E (l+(j-1)u)+(l+(i--1)u) Z ( l+(N- j )v  
D j=2 j=i+l 

using Theorem 3.1. On simplifying the expression on the right of the equality sign, we get the 
desired expression for S~. Treat S~, as given by Lemma 3.3, as a function of the real variable i. 
Then it is easily verified that S~ attains its maximum for i = G/2D. Furthermore, it is proved 
that 

max Si = (G 2 +4HD)/8D 2 . 
i 

We now turn back to the error equation (2.5) and write it in the form 

lel = M-11TI< P-11TI, 

using Eqn. (2.9), and thus 
N N -  1 h 5 h 6 

Levi < ~ P~jltjl = (Paltxl+P~NItNI) + ~ P~jlt~l < MsR~ + M6S, (3.9) 
j=l j=2 = i g 6  ~ 6  ' 

using Eqns. (2.6), (3.8), and definitions of Ms, M6 as in Eqn. (1.7). 
We finally obtain 

Ilell = max leil 
i 

h s 2 + ( N - 1 ) w  h 6 GE+4HD 
< 18~-6 -Ms O + 1 - ~  M6" D 2 

= O(h4), (see Lemmas 3.2 and 3.3), 

on substituting the values of D, G, and H etc. 

(3.10) 

4.  A n u m e r i c a l  e x a m p l e  

In this section we will compare the observed maximum error in absolute value (henceforth to 
be designated by Eo) with its bound Ilell based on Eqn. (3.10) for the following boundary value 
problem 

y"(x)=y(x)-4xe ~, 0 _ < x <  1, (4.1) 

y ' (0)-y(0)  = 1, y ' (1)+y(1)= - -e .  

We can easily verify that the analytical solution of Eqns. (4.1) is 

y(x) = x ( 1 - x )  e ~ , 

and Ms =25e, M6=36e. 
In order to reduce the rounding errors to a minimum, the bounds Ilell based on Eqn. (3.10) 

were calculated using "extended precision arithmetic", on an IBM 1130 Computer at the 
Aligarh Muslim University, Aligarh, India. The problem under consideration is solved with 
h = 2  -m, m = l ,  2 . . . . .  8. The numerical results are summarized in the accompanying table. 
Clearly the error bound Ilell based on Eqn. (3.10) is at most 4 times larger than E 0. 
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TABLE 1 

R.  A.  Usmani  

No. of h Ijell Eo Ilell/Eo 
unknowns based on 
Yi Eqn. (3.10) 

3 �89 0.140 x 10-1 0.540 x 10- 2 2.6 
5 �88 0.115 x 10 -2 0.364 x 10 3 3.1 
9 ~ 0.816• -4  0.232 x 10 4 3.5 

17 • 0.542 • 10-5 0.146 x 10-5 3.7 16 

33 ~ 0.349• 10 -6 0.913 • 10 7 3.8 32 
65 ~ 0.222• 10 -7 0.571 • 10 8 3.9 6,* 

129 ~ 0.140:,< 10 8 0.357• 10 -9  3.9 1 2 8  

257 ~ 0.876 • 10- lo 0.212 x 10- lo 4.0 2 5 6  
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